Wednesday, September 23, 2009

Quack You! Medical Tourism and Stem Cells

In the September 2009 issue of Nature Biotechnology, Jane Qiu reports on a thriving trade in nonvalidated stem cell interventions for incurable illnesses ("Trading on Hope"). The article provides numerous examples of overseas clinics that cater primarily to North American and European clientele in offering pricey, unproven stem cell transplants for incurable conditions like spinal cord injury, Parkinson's disease, and autism. Many of these clinics make extravagant claims in their promotion materials.

Encouragingly, policy makers are beginning to take notice. China, for example, has issued new regulations on clinical application of novel interventions; it requires licensing for clinics that provide unproven stem cells. India has issued guidelines on stem cell research and therapy. As noted previously in this blog, the scientific society ISSCR issued guidelines urging clinicians to offer nonvalidated stem cell interventions to patients only in the context of clinical trials designed to test safety and efficacy. Problem is (according to the article), guidelines are sporadically enforced, if that.

I think there is much more that governments and professional societies can and should do to stem this unethical conduct. Though most of these clinics are located outside of North American and Europe, some overseas clinics have reputable, North American / European scientists and clinicians on their advisory board or have partnerships with biotechnology companies that are based in North America / Europe. Examples include Stemedica (which includes several Stanford and UCSD faculty on its advisory board), and Theravitae (which has involved close collaboration with University of Pittsburgh clinicians), and Vescell (which includes Nobelist Aaron Ciechanover on its scientific advisory board). All of these companies offer stem cell interventions to large numbers of patients outside trials, and make claims that their interventions are effective when, in fact, they remain unproven.

1- Research ethics policies should condemn scientist-clinicians who travel or collaborate abroad in delivering nonvalidated, potentially risky interventions overseas outside the context of a clinical trial. Policies should state clearly the imperative of subjecting nonvalidated interventions to systematic study.
2- Institutions should not allow these clinics to trade on their reputations, and should sanction faculty members who are involved in such activities.
3- professional societies in medical fields (e.g. cardiology) and research areas (stem cells, gene transfer) should steward the standing and credibility of their research field by developing policies and standards that discourage inappropriate activities-- through social pressure-- by providing a benchmark against which the conduct of scientists and clinicians can be judged.

(photo credit: Insert Photographer Here, 2006)

Wednesday, September 9, 2009

Accelerated Approval: Safe at Any Speed?

Drug regulatory authorities like the FDA have a mandate to protect public health by requiring and evaluating evidence of safety and efficacy before licensing new drugs for commercial sale. But for decades now, patient advocates have argued that FDA bureaucracy kills by keeping promising drugs from the IV's of terminal patients. In response to these criticisms, FDA and others have created new pathways for drug approval whereby drugs can be partially approved for sale on the basis of smaller, Phase 2 trials using surrogate endpoints (tumor shrinkage) instead of survival– provided drug companies confirm efficacy in subsequent trials.

This pathway, called "accelerated approval," is controversial because it allows companies to sell drugs whose efficacy and safety is not yet well established. True- the companies are obliged to run confirmatory studies, but a) how will confirmatory trials enroll enough subjects if patients know they might be randomized to standard, ineffective drugs, and they can get the drug outside a clinical trial? b) drug companies will not have sufficient incentive to run confirmatory studies once their drug is provisionally approved. c) drug companies stand to make lots of money selling unproven drugs to desperate patients in search of a cure.

In the most recent issue of Journal of Clinical Oncology, Elizabeth Richey and coauthors put these concerns to the test in an analysis "Accelerated Approval of Cancer Drugs: Improved Access to Therapeutic Breakthroughs or Early Release of Unsafe and Ineffective Drugs." They find that:

• a very large percentage of new cancer drugs are initially approved under "accelerated approval." (37% approvals between 1995 and 2008)

• 63% of drugs receiving accelerated approval have their clinical benefit confirmed in subsequent studies

• drugs involving very rare cancers are often not subjected to confirmatory testing (42%); drugs for more common cancers are tested in confirmatory studies typically (71%-- though the percentage I calculated from their figures is actually higher- 86%)

• drugs receiving accelerated approval are twice as likely to receive black box warnings compared with drugs approved by the standard mechanism (21% vs. 10%)

• about half of non-orphan drugs approved under accelerated approval (47%) become first line treatment regimens in the National Comprehensive Cancer Network.

The authors see the glass half full on accelerated approval: to the title question of their article, the authors answer "Improved Access to Therapeutic Breakthroughs." (photo credit: Marxpix 2008)