The ethical issues seem just as daunting. Deep brain stimulation has greatly improved the management of Parkinson’s for patients who are no longer responding to dopamine replacement. And yet, those pursuing fetal tissue transplantation will likely advocate pursuing trials in younger patients with less advanced disease. As pointed out by a European team of researchers, "A significant effort of bioethical research and conceptual clarification is required in anticipation of the first protocols involving human subjects." And in a recently published article in Movement Disorders, several coauthors and I outline various ethical challenges presented by such studies. These include a high degree of uncertainty about the safety of interventions, and a baseline risk associated with delivery that approaches levels of risk encountered in phase 1 cancer trials (for studies that involve eight inoculations to the brain, risk of intracerebral brain hemorrhage leading to permanent neurological deficits is on the order of 2%).
Advocates of the new wave of studies insist we know much more about the properties of fetal tissues than we did in the 1990s; they further note that such studies will provide a basis for later studies involving induced pluripotent stem cells and other tissues. Perhaps, but given the remaining uncertainties and promise of DBS, it’s hard to imagine how fetal graft experiments could credibly establish a claim of clinical equipoise with deep brain stimulation. For these reasons, a more prudent ethical course—if fetal transplant studies for Parkinson's are to be done at all—would be to pursue safety and feasibility studies in patients who are no longer responsive to standard care. Only once parameters are optimized and mechanisms well understood should clinicians consider studies in patients who are earlier in the disease process. (photo credit: Ethan Hein 2008)